Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 14(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38534251

RESUMEN

The human CC chemokine receptor 7 (CCR7) is activated by two natural ligands, CC chemokine ligand 19 (CCL19) and 21 (CCL21). The CCL19-CCL21-CCR7 axis has been extensively studied in vitro, but there is still debate over whether CCL21 is an overall weaker agonist or if the axis displays biased signalling. In this study, we performed a systematic analysis at the transducer level using NanoBRET-based methodologies in three commonly used cellular backgrounds to evaluate pathway and ligand preferences, as well as ligand bias and the influence of the cellular system thereon. We found that both CCL19 and CCL21 activated all cognate G proteins and some non-cognate couplings in a cell-type-dependent manner. Both ligands recruited ß-arrestin1 and 2, but the potency was strongly dependent on the cellular system. Overall, CCL19 and CCL21 showed largely conserved pathway preferences, but small differences were detected. However, these differences only consolidated in a weak ligand bias. Together, these data suggest that CCL19 and CCL21 share mostly overlapping, weakly biased, transducer profiles, which can be influenced by the cellular context.


Asunto(s)
Transducción de Señal , Humanos , Receptores CCR7/metabolismo , Ligandos
2.
Cancer Immunol Immunother ; 73(1): 11, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231448

RESUMEN

The human CC chemokine receptor 8 (CCR8) is specifically expressed on tumor-infiltrating regulatory T cells (TITRs) and is a promising drug target for cancer immunotherapy. However, the role of CCR8 signaling in TITR biology and the effectiveness of CCR8 small molecule antagonists as TITR-targeting immunotherapy remain subjects of ongoing debate. In this work, we generated a novel cellular model of TITRs by culturing peripheral blood mononuclear cell-derived regulatory T cells in medium containing tumor cell-conditioned medium, CD3/CD28 activator, interleukin-2 and 1α,25-dihydroxyvitamin D3. This cellular model (named TITR mimics) highly and stably expressed a series of TITR signature molecules, including CCR8, FOXP3, CD30, CD39, CD134, CD137, TIGIT and Tim-3. Moreover, TITR mimics displayed robust in vitro immunosuppressive activity. To unravel the functional role of CCR8 in TITR mimics, a chemotaxis assay was performed showing strong and CCR8-specific migration toward CCL1, the natural chemokine agonist of CCR8. However, either stimulation (with CCL1) or blocking (with the small molecule antagonist NS-15) of CCR8 signaling did not affect the immunosuppressive activity, proliferation and survival of TITR mimics. Collectively, our work provides a method for the generation of TITR mimics in vitro, which can be used to study TITR biology and to evaluate drug candidates targeting TITRs. Furthermore, our findings suggest that CCR8 signaling primarily regulates migration of these cells.


Asunto(s)
Leucocitos Mononucleares , Neoplasias , Humanos , Receptores CCR8 , Linfocitos T Reguladores , Medios de Cultivo Condicionados
3.
Cell Commun Signal ; 22(1): 43, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233929

RESUMEN

BACKGROUND: The human CXC chemokine receptor 2 (CXCR2) is a G protein-coupled receptor (GPCR) interacting with multiple chemokines (i.e., CXC chemokine ligands CXCL1-3 and CXCL5-8). It is involved in inflammatory diseases as well as cancer. Consequently, much effort is put into the identification of CXCR2 targeting drugs. Fundamental research regarding CXCR2 signaling is mainly focused on CXCL8 (IL-8), which is the first and best described high-affinity ligand for CXCR2. Much less is known about CXCR2 activation induced by other chemokines and it remains to be determined to what extent potential ligand bias exists within this signaling system. This insight might be important to unlock new opportunities in therapeutic targeting of CXCR2. METHODS: Ligand binding was determined in a competition binding assay using labeled CXCL8. Activation of the ELR + chemokine-induced CXCR2 signaling pathways, including G protein activation, ß-arrestin1/2 recruitment, and receptor internalization, were quantified using NanoBRET-based techniques. Ligand bias within and between these pathways was subsequently investigated by ligand bias calculations, with CXCL8 as the reference CXCR2 ligand. Statistical significance was tested through a one-way ANOVA followed by Dunnett's multiple comparisons test. RESULTS: All chemokines (CXCL1-3 and CXCL5-8) were able to displace CXCL8 from CXCR2 with high affinity and activated the same panel of G protein subtypes (Gαi1, Gαi2, Gαi3, GαoA, GαoB, and Gα15) without any statistically significant ligand bias towards any one type of G protein. Compared to CXCL8, all other chemokines were less potent in ß-arrestin1 and -2 recruitment and receptor internalization while equivalently activating G proteins, indicating a G protein activation bias for CXCL1,-2,-3,-5,-6 and CXCL7. Lastly, with CXCL8 used as reference ligand, CXCL2 and CXCL6 showed ligand bias towards ß-arrestin1/2 recruitment compared to receptor internalization. CONCLUSION: This study presents an in-depth analysis of signaling bias upon CXCR2 stimulation by its chemokine ligands. Using CXCL8 as a reference ligand for bias index calculations, no ligand bias was observed between chemokines with respect to activation of separate G proteins subtypes or recruitment of ß-arrestin1/2 subtypes, respectively. However, compared to ß-arrestin recruitment and receptor internalization, CXCL1-3 and CXCL5-7 were biased towards G protein activation when CXCL8 was used as reference ligand.


Asunto(s)
Quimiocinas , Receptores de Interleucina-8B , Humanos , Receptores de Interleucina-8B/metabolismo , beta-Arrestinas/metabolismo , Ligandos , Quimiocinas/metabolismo , Proteínas de Unión al GTP/metabolismo
4.
Biosensors (Basel) ; 13(8)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37622853

RESUMEN

Despite G protein-coupled receptors (GPCRs) being important theapeutic targets, the signaling properties of many GPCRs remain poorly characterized. GPCR activation primarily initiates heterotrimeric G protein signaling. To detect ligand-induced G protein activation, Bioluminescence Resonance Energy Transfer (BRET)-based biosensors were previously developed. Here, we designed a novel set of Nanoluciferase (NLuc) BRET-based biosensors (REGA-SIGN) that covers all Gα protein families (i.e., Gαi/o, GαSs/L, Gα12/13 and Gαq/15). REGA-SIGN uses NLuc as a bioluminescent donor and LSS-mKATE2, a red-shifted fluorophore, as an acceptor. Due to the enhanced spectral separation between donor and acceptor emission and the availability of a stable substrate for NLuc, this donor-acceptor pair enables sensitive kinetic assessment of G protein activity. After optimization, the NLuc integration sites into the Gα subunit largely corresponded with previously reported integration sites, except for GαSs/L for which we describe an alternative NLuc insertion site. G protein rescue experiments validated the biological activity of these Gα donor proteins. Direct comparison between EGFP and LSS-mKATE2 as acceptor fluorophores revealed improved sensitivity for nearly all G protein subtypes when using the latter one. Hence, REGA-SIGN can be used as a panel of kinetic G protein biosensors with high sensitivity.


Asunto(s)
Proteínas de Unión al GTP , Transducción de Señal , Transferencia de Energía , Colorantes Fluorescentes , Ionóforos
5.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36012168

RESUMEN

The human C-C chemokine receptor type 7 (CCR7) has two endogenous ligands, C-C chemokine ligand 19 (CCL19) and CCL21, displaying biased agonism reflected by a pronounced difference in the level of ß-arrestin recruitment. Detecting this preferential activation generally requires the use of separate, pathway-specific label-based assays. In this study, we evaluated an alternative methodology to study CCR7 signalling. Cellular electrical impedance (CEI) is a label-free technology which yields a readout that reflects an integrated cellular response to ligand stimulation. CCR7-expressing HEK293 cells were stimulated with CCL19 or CCL21, which induced distinct impedance profiles with an apparent bias during the desensitisation phase of the response. This discrepancy was mainly modulated by differential ß-arrestin recruitment, which shaped the impedance profile but did not seem to contribute to it directly. Pathway deconvolution revealed that Gαi-mediated signalling contributed most to the impedance profile, but Gαq- and Gα12/13-mediated pathways were also involved. To corroborate these results, label-based pathway-specific assays were performed. While CCL19 more potently induced ß-arrestin2 recruitment and receptor internalisation than CCL21, both chemokines showed a similar level of Gαi protein activation. Altogether, these findings indicate that CEI is a powerful method to analyse receptor signalling and biased agonism.


Asunto(s)
Quimiocina CCL21 , Quimiocinas C , Quimiocina CCL19/metabolismo , Quimiocina CCL21/metabolismo , Quimiocinas/metabolismo , Quimiocinas C/metabolismo , Impedancia Eléctrica , Células HEK293 , Humanos , Ligandos , Receptores CCR7/metabolismo , beta-Arrestinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...